Prof. M. A. Valente Monteiro

Laboratório Nacional de Engenharia Civil (LNEC), Portugal

Prof. P. Moyo

University of Cape Town, South Africa

Prof. A. Muttoni

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Dr S. Nanukuttan

Queens University Belfast, United Kingdom

Prof. T. O. Olsen

Dr.techn.Olav Olsen AS, Norway

Dr M. Otieno

University of the Witwatersrand, South Africa

Prof. B. Pielstick

Eisman & Russo, United States

Prof. G. Plizzari

University of Bergamo, Italy

Prof. R. Polder

TNO Built Environment and Geosciences & Delft University of Technology, Netherlands

Prof. M. Raupach

Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Germany

Prof. K. Sakai

Kagawa University, Japan

Prof. M. Santhanam

Indian Institute of Technology Madras, India

Prof. E. Schlangen

Delft University of Technology, Netherlands

Dr M. Serdar

University of Zagreb, Croatia

Prof. V. Sigrist

Lucerne School of Engineering and Architecture, Switzerland

Prof. I. Stipanovic Oslakovic

University of Twente, Netherlands

Prof. L. Taerwe

Ghent University, Belgium

Prof. A. Taffe

Technische Universität Berlin, Germany

Dr R. Torrent

Advanced Materials Services, Argentina

Prof. J. Toscas

Precast Concrete
Institute, United States

Prof. Tamon Ueda

Hokkaido University, Japan

Prof. G. van Zijl

University of Stellenbosch, South Africa

Prof L. Vandewalle

Catholic University Leuven, Belgium

Prof. J. Vitek

Metrostav a. s., Czech Republic

Prof. J. C. Walraven

Delft University of Technology, Netherlands

Dr. H. Wiggenhauser

Federal Institute for Materials Research and Testing (BAM), Germany

Dr P. Castro Borges

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico

ORGANIZING COMMITTEE

Prof. H. Beushausen

(Co-Chairman) University of Cape Town, South Africa

Prof. B. Boshoff

(Co-Chairman)
Stellenbosch University,
South Africa

Prof. M. Alexander

(Co-Chairman)
University of Cape
Town, South Africa

Prof. F. Dehn

Gesellschaft für Materialforschung und Prüfungsanstalt für das Bauwesen Leipzig mbH (MFPA) & University Leipzig, Germany

R. Heiyantuduwa

University of Cape Town, South Africa

Dr M. Otieno

University of the Witwatersrand, South Africa

OVERVIEW OF PAPERS

Keynote Lectures

Performance-Based Design of Bridges and the Brenner Base Tunnel / Bergmeister / 3

Sustainability and Performance Design of Structures With Precast Elements / Fernández-Ordóñez / 13

fib Model Code 2020 – A New Development in Structural Codes: Towards a General Code for Both New and Existing Concrete Structures / Matthews - Bigaj-van Vliet - Dieteren / 22

Performance-Based Service Life Design in the 2021 Version of the European Concrete Standards – Ambitions and Challenges / Helland / 32

Durability Requirements for Concrete Nowadays and in the Future – Key Parameters for Performance Concepts / Müller / 42

Performance-Based Concrete Durability
Design and Specification in South Africa –
Background, Implementation, and Quo Nunc?
/Alexander/52

Concrete Bridge Design for Aesthetical Performance / Kruger / 63

Forensic Engineering: Need for a New Professional Profile / Walraven / 73

A Performance-Based Approach for Mechanical Concrete Properties – Roadmap Towards Constitutive Coherences / Dehn · Herrmann / 83

Sustainable Concrete and Concrete Structures – Challenge for a Sustainable Future / Hajek / 91

Chapter 1: Structural Analysis and Design

Effect of Quality Control on Reliability of Reinforced Concrete Structures According to Eurocodes / Holicky · Diamantidis · Sykora / 103

The *fib* Model Code for Concrete Structures 2010: The Role in Development and Revision of Russian National Codes / Falikman · ZVEZdOV / 105

Safety of Solid Hydraulic Structures / Kunz / 107

Composite Concrete Construction With Reference to Sasol Coal Mining Projects / Fliss · Szymczak / 109

Building Concrete Shells Without Formwork and Falsework / Kromoser · Kollegger / 111

Hazelmere Dam Raising / Botha · Booyse · Fitz / 113

Modified Tubed Mega Frame Structural Systems for Tall Buildings / King · Hallgren · Partovi · Svärd / 115

Concrete Structures in the Sea: Some Examples / 0/sen / 117

A Modern Heritage Structure in India / Panday / 119

Bond Performance of Post-Installed and Cast-In-Place Reinforcing Bars Using Modified Beam-End-Test Specimen/Rex·Sharma· Hofmann/121

An Investigation of the Shear Stress-Strain Characteristics of Nuclear Power Plant Wall Elements With High Strength Materials / Park

New Strategy for Modelling Air Leakage Tightness of Pressure Containment Vessels of Nuclear Power Plants: Large-Scale Application to Vercors Containment Vessel / Mozayan Kharazi / 125

The Leakage Behaviour of a Prestressed Concrete Containment Wall Segment Under Different Air Loads / Herrmann - Müller - Niklasch - Michel-Ponnelle - Masson / 127

Damage Predictions in Concrete Silo Using Finite Element Analyses / Kermiche · Haddi · Djelal · Redjel · Boussaid / 129

Material Model for Nonlinear Finite Element Analyses of Large Concrete Structures / Engen-Hendriks - Øverli - Aldstedt / 131

Reinforcement Lay-Out Implications for Reinforced Concrete Half-Joint Structures / Desnerck · Lees · Morley / 133

Numerical Limit Analysis of Precast Concrete Structures / Herfelt · Poulsen · Hoang · Jensen / 135

Aging of Standard Concretes and Their Effect on Concrete Cone Failure / Wendner - Czernuschka -Nincevic · Marcon / 137

Composite Steel Reinforced Concrete Columns for High-Rise Buildings / Gramblicka

Development of Ducted Columns for Smoke Extraction / Bardzinski · Abdi / 141

Shear Behaviour Evaluation of RC Columns Subject to Low-Velocity Impact / Chen - Zhou -

Response Analysis of Frame Elements Under Blast Loads / Guner / 145

NLFEA of Reinforced Concrete Shear Walls Under Cyclic Loading by Means of PARC CL2.0 Crack Model / Belletti · Scolari · Vecchi / 147

Fatigue Behaviour of Fasteners in Case of Concrete Failure: Numerical and Experimental Investigations / Toth · Ožbolt · Fuchs · Hofmann / 149

New Investigations of Concrete Dowels for High Dynamic Load Cycles Based on Hybrid-Towers for Wind Turbines / Koob · Minnert / 151

Numerical and Experimental Investigations of the Warming of Fatigue-Loaded Concrete / von der Haar · Wedel · Marx / 153

Experimental Investigation of Fatigue Process in Concrete Under High-Cycle Loading / Thiele · Petryna · Rogge · Baeßler / 155

Evaluation of Strut-and-Tie Provisions of fib Model Code 2010 for RC Non-Slender Members Under Point Loads / Uzel / 157

Cracking Analysis of RC Ties Considering the Effect of Internal Secondary Cracks / Debernardi Taliano / 159

Advanced Stochastic Algorithm to Simulate Transverse Cracking in Reinforced Concrete Tension Members / Khan · Huguet · Parente · Erlicher Kotronis / 161

Crack Spacing Model for Reinforced Concrete Tension Members Based on Damage Zone and Strain Compliance Concepts / Kaklauskas Ramanauskas · Ng · Jakubovskis · Juknys / 163

Load-Bearing Behaviour of Shape-Optimised Struts Made of UHPC / Henke · Fischer / 165

Crack Predictions Using Random Fields / yan den Bos - Garofano / 167

A New Approach in Predicting the Mean Crack Spacing of Flexural Reinforced Concrete Elements / Kaklauskas · Ramanauskas / 169

Cracking of Massive Concrete Structures Under Monotonic Loading: Results of the CEOS.fr Experiments / Rospars · Cortade / 171

Chapter 2: Analysis and Design: Flexural and Prestressed Members

Approaches for Suitable Modelling and Strength Prediction of Reinforced Concrete Slabs / Cantone · Belletti · Muttoni · Ruiz / 175

Reinforced Concrete Slabs Under Impact – Scale Effects / Hering · Kühn · Curbach · Häußler-Combe / 177

The Influence of Transverse Reinforcement on the Cracking Behaviour of RC Panels and Slabs / Keuser · Berger · Keuser · Purainer / 179

New Void Formers for Biaxial Voided Slabs / Albert - Schnell - Busch / 181

A Review of the Span-to-Depth Ratio Methods of Design / Tovi · Goodchild · Bahadori-Jahromi · Sofroniou

Quantitative Evaluation of Eurocode Provisions With Respect to Structural Robustness on the Basis of Numerical Analysis of RC Beams Including Membrane Action / Droogné Botte · Caspeele · Taerwe / 185

Numerical Analysis of RC Slab Under Blast Loads Using the Coupling of LBE and ALE Methods in LS-DYNA / Shuaib · Daoud / 187

Performance Evaluation of Reinforced Concrete Flexural Members During Fire Using Nonlinear Static Analysis / Lakhani · Sharma · Hofmann / 189

Secondary Effect of Prestressing at ULS / Pažma · Halvoník · Borzovič / 191

On the Exact Computation of the Required Prestressing Force in Concrete Structures via Inverse Analysis / Skatulla · Etienne · Sansour / 193

Verification of the Bursting and Spalling Formulas in the fib Model Code by Finite Element Analyses of Anchorage Zones of Pre-Tensioned Girders / Van Meirvenne · Taerwe · Boel De Corte / 195

Evaluation of Design Approaches for Bond Anchorage in Pre-Tensioning / Geßner · Schmidt / 197

Study and Design of Anchorage Corner Blisters of Post-Tensioning Tendons / Marchão Lúcio - Ganz / 199

Shear Behaviour of Post-Tensioned Concrete Beams With a Low Amount of Transverse Reinforcement / Huber · Huber · Kollegger / 201

Chapter 3: **Analysis and Design: Shear and** Torsion

Assessment of Alternative Shear Resistance Models for Reinforced Concrete Sections / Vilioen · Retief · Sykora / 205

Analysis of Shear Transfer Actions in Reinforced Concrete Members Using Refined Measurement Techniques / Cavagnis · Ruiz · Muttoni / 207

Investigation of ν_{min} Based on Experimental Research / Yang · van der Veen · Hordijk · de Boer / 209

Shear Tests on Large Prestressed Concrete T-Beams / Ensink · van der Veen · de Boer / 211

Reliability of the Models for Assessment of Punching Resistance of Footings / Halvonik Hanzel · Maitanova / 213

Shear Force Distribution in RC Slabs Subjected to Punching: Solid Nonlinear FE Analysis / Shu · Plos · Zandi · Johansson · Nilenius / 215

Effect of Openings or Differences in Slab Thickness on the Load Distribution of Slabs Subjected to Punching Shear / Molkens / 217

Shear Resistance Mechanism Evaluation of RC Beams Based on Arch and Beam Actions / Nakamura · Iwamoto · Fu · Yamamoto · Miura / 219

Modelling the Ultimate Shear Behaviour of Deep Beams With FRP Internal Reinforcement / Mihaylov / 221

A Four Metre Deep Shear Test: Comparing International Predictions to Observations / Bentz · Collins / 223

A Macro-Element for the Nonlinear Analysis of Deep Beams Based on a Three-Parameter Kinematic Model / Liu · Mihaylov / 225

Influence of Aggregate Type on Shear Strength of RC Beams Without Shear Reinforcement / Huber · Huber · Kollegger / 227

The Influence of the Height of the Compression Zone of a Cross Section on the Load-Bearing Capacity of Reinforced Concrete Beams Subjected to Shear and Bending / Bodzak

Analysis of Concrete Contribution in the Shear Strength of Beams Reinforced With FRP / Steel Bars Without Stirrups / Kotynia Kaszubska / 231

Chapter 4: **Structures Exposed to Seismic** Loading

Low Damage Seismic Resistant Technologies for Performance-Based Design of Accelerated Bridge Construction in High Seismicity / Mashal · Palermo / 235

Seismic Performance of Concrete Arch Bridges / Mandić Ivanković · Srbić · Radić / 237

A Case Study to Improve Seismic Performance of a Rigid Frame Viaduct Based on 3-D Dynamic Analysis / Matsuura · Takeyama / 239

Towards Development of a Nonlinear Structural Analysis Analytical Model for Evaluation of Structures / Mbewe · van Zijl / 241

Seismic Behaviour of Traditional Multi-Storey Precast Reinforced Concrete Frame Building / Zhao · Zhu · Lu / 243

Study of a New Earthquake Resilient Shear Wall / Liu - Jiang / 245

Seismic Behaviour Research of L-Shaped Partly Precast Shear Wall With Boundary Elements Cast-In-Situ /Li-Wang-Lu/247

Study on the Seismic Performance of L-Shaped Sandwich Insulation Precast RC Shear Wall / Lu · Li · Wang / 249

Modelling Parameters for Beam-Column Joints in Seismic Performance Assessment of Structures – A New Proposal / Sharma · Hofmann / 251

Investigation on Seismic Behaviour for Structural Integrity of a Collapsed RC Building / Oyegbile / 253

Size Effect in Shear Failure on Reinforced Concrete Beams / Terai / 255

Chapter 5: Shrinkage and Creep

Improving the Quality of Prediction Models for Concrete Creep and Shrinkage / Suza · Kollegger / 259

Evaluation of the Creep Coefficients of International Concrete Creep Prediction Models / Fanourakis / 261

Shape Correction Factors for Drying Shrinkage of Several Typical Concrete Cross-Sections / Reybrouck - Wendner - Caspeele - Taerwe / 263

Effect of Size and Thermal History on Drying Shrinkage / Darquennes · Vasylchenko · Benboudjema / 265

Drying and Shrinkage of Large Concrete Specimens – Experimental Research / Vinkler Vitek / 267

Cracking Due to Restrained Shrinkage of Massive Concrete Structures: Results of the CEOS.fr Experiments / Torrenti / 259

Proposed Mould for the Assessment of Pure Plastic Shrinkage Cracking / Steyl · Combrinck · Boshoff / 271

Analytical Model of the Cracking of Plastic Concrete / Combrinck · Boshoff / 273

Concept to Predict Crack Initiation and Crack Development in Fairfaced Concrete Screeds / Weiler · Waldmann / 275 Controlling Crack Widths in Walls Restrained at Their Base and Ends / Micallef · Vollum · Izzuddin / 277

Influence of Internal Curing on Autogenous and Drying Shrinkages of Ultra-High Performance Concrete Considering Heat Treatment / Kang·Hong·Moon/279

Experimental Investigation and Modelling of Temperature Effects on Basic Creep of Concrete / Vidal · Sellier · Cagnon · Ladaoui · Bourbon / 281

Chapter 6: Materials, Production, Testing, Modelling, Construction

Solutions for a Low-CO₂, Eco-Efficient Cement-Based Materials Industry / Scrivener John · Gartner / 285

New Zealand Experience With Performance-Based Specifications for Concrete Used in the Rebuild of Christchurch After the Canterbury Earthquakes / Mackechnie / 287

Influence of Modern Mixing Systems for Producing Self-Compacting High Performance Concrete / Beitzel - Beitzel / 289

The Use of Rice Husk Ash in Rigid Highway Pavements / Hyndman · Ahmed / 291

Suitability of Corncob Ash as a Partial Cement Replacement / Kamau · Ahmed · Hirst · Kangwa / 293

The Use of Electric Arc Furnace Slag as a Coarse Aggregate in Alkali-Activated Concretes / Kovtun · Ingram / 295

The Role of Metal-Proton Exchange Reactions in the Water-Induced Corrosion of Wollastonite / Giraudo · Thissen / 297

The Influence of Fly Ash and Ground Granulated Blast Furnace Slag on the Elastic Modulus of Concrete / Sun · Fanourakis / 299

Structural Lightweight Aggregate Concrete With Density Below 1100 kg/m³/Martius-Hammer Shon-Kjellmark/301

Feasibility Study of Fast Carbonation of Recycled Concrete Aggregates / Cazacliu · Gobert-Condoret · Huchet · Camy · Torrenti / 303 The Influence of Aggregate on the Elastic Modulus of Concrete / Sun · Fanourakis / 305

Five Years of International Collaborative Research on Self-Healing Capacity of Cementitious Composites / Ferrara · Caggiano · di Luzio · Etse · Gettu · Krelani · Ferreira · Flores · Serna · Filho / 307

Development of Novel Low Thermal Conductivity Concrete Using Aerogel Powder / Tsioulou Erpelding Lampropoulos / 309

Recent Development of Ultra-High Strength Prestressing 7-Wire Strand 17.8 mm With Epoxy Coating / Nakaue · Tanaka · Oshima · Matsubara / 311

The Strength Relationship Between the Cube and Cylinder / Sun · Fanourakis / 313

Massive Numerical Simulations at the Service of Major Construction Projects to Deal With Concrete Early Age Cracking Issues / Meyer-Linger-Boutillon-Proux-Duverneuil / 315

The Effect of Size in Concrete Compressive Failure / Muciaccia Rosati / 317

Computed Tomography: New Possibilities in Testing of Concrete / Balázs · Czoboly · Lublóy / 319

The Effect of Construction Method and Formwork Choices on the Scope of Construction Projects / Mouton · Marinov / 321

Application of a Cusum Control System for Enhanced Robustness of the Flow Properties of Self-Compacting Concrete / Schmidt - Kühne / 323

Quality-Assured Solutions for Vegetative (Green) Roof Systems on Concrete Decks / Capener · Edwards · Emilsson · Malmberg · Pettersson Skog / 325

Experience of Underwater Concrete for Bored Piles and Diaphragm Walls in Mozambique / Seitz-Pengyu-Swanepoel/327

Investigating the Carbonation and Mechanical Performance of Reactive MgO Cement Based Concrete Mixes / Univer/329

Improving Hardened Properties of Portland Cement Concrete With Surface-Applied Colloidal Nano-Silica / Rollins · Owino · Fomunung / 331 Recycling of Waste Technological Sludge in Alkali-Activated Concretes / Kalina · Bilek · Soukal · Opravil / 333

Chapter 7: Fibre Reinforced Concrete

How to Deal With Scatter in Steel Fibre Concrete Structures – A Swedish Proposal / Silfwerbrand / 337

Modelling the Actual Behaviour of UTCRCP / Kearsley · Mostert / 339

The Mechanical Properties of UHPC Reinforced by Different Types of Fibre / Vatannia - Kearsley - Mostert / 341

Experimental Quantification of the Cracking Localisation Phenomenon in Tensile R/FRC Bars / Dancygler · Karinski · Navon / 343

Stress-Strain Behaviour for High-Strength Steel Fibre Reinforced Concrete Under Compression and Tension / Lu · Zhang · Nian / 345

Combined Non-Destructive Method for Evaluating the Mechanical Performance of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) / Lampropoulos · Tsioulou · Paschalis / 347

Fatigue Behaviour of Carbon Textile Reinforced Concrete Under Tensile Loading / Niederwald · Keuser / 349

Mechanical Properties of Steel Fibre Reinforced Geopolymer Composites Cured Under Ambient Temperature / Al-Majidi · Lampropoulos · Cundy / 351

Durability Design of Steel Fibre Reinforced Concrete for Severe Exposure Conditions / Edvardsen · Jackson / 353

Corrosion Resistance of Steel Fibre Reinforced Concrete — A Literature Review / Marcos-Meson · Michel · Solgaard · Fischer · Edvardsen · Skovhus / 355

"Real Time" Quality Control System for Steel Fibre Concrete / Vitt / 357

Deterministic Based Optimisation of a Shotcrete Tunnel Lining / Laniková · Venclovský Štěpánek / 359 Design of Fibreglass Reinforcement in Precast Tunnel Segments/Meda·Rinaldi·Spagnuolo/361

Influence of Toughness on the Shear Behaviour of Steel Fibre Reinforced Self-Consolidating Concrete Beams / Zhang · Shi · Ding · Ni · Zhang / 363

Flexural Performance of Hybrid Fibre Reinforced Concrete Precast Tunnel Segment / Ni zhang · Shi · Shi · Zhang / 365

Chapter 8: Precast Technology

First-Year Results of the North American Precast Concrete Sustainable Plant Program / Lorenz-Frank/369

Precast Network Arches: Aesthetics, Structural Efficiency and Construction Speed / YOUSE FROM: Helwig · Bayrak / 371

Structural Design and Construction System of the Suita City Football Stadium/Okude/373

Wind Turbine Towers out of Semi-Precast Elements – Structural Challenges of the Erection Process / Fischer · Schönweger · Kollegger / 375

Hybrid Precast High Performance Concrete System for Multistorey Buildings / Zavliaris / 377

Development of a Total Precast System for Prison Cells / D'Arcy / 379

Concrete Strength in Precast Thin-Walled Elements / Flaga · Derkowski · Surma / 381

Experimental Analysis of Column to Column Connections for Precast Concrete Truss Towers to Support Wind Energy Generators / Souza Lucio Chastre - Souza - Martins / 383

Load Carrying Capacity of Shear Wall T-Connections Reinforced With High Strength Wire Ropes / Joergensen · Bryndum · Larsen · Hoang / 385

Load Bearing and Stability Behaviour of Concrete Sandwich Panels Under Compressive Load / d'Escurac · Pahn · Schnell / 387

Development of Novel Connection Methods Between Precast Concrete Panels / Vella · Vollum-Jackson · Stehle / 389 Tensile Capacity of U-Bar Loop Connections With Precast Fibre Reinforced Dowels / Sørensen · Hoang · Olesen · Fischer / 391

Structural Behaviour of Sandwich-Roof Panels With Different Distributions of Bar-Shaped Connectors / Weiler - Schnell - Pahn / 393

A New Construction Method for Double-Wall Elements Made of UHPC / Preinstorfer-Kollegger / 395

Test and Analysis of L-Shaped Precast RC Shear Walls With Middle Cast-In-Situ Joint/Wang \cdot Li \cdot Lu / 397

Chapter 9: Bridge Structures

COST Action TU1406: Quality Specifications for Roadway Bridges, Standardisation at a European Level (BridgeSpec) — Performance Indicators / Campos e Matos · Casas · Strauss · Fernandes / 401

Service Life Performance of Bridges – A Case Study Investigation / Dette - Sigrist / 403

Hydrophobic Impregnation on Concrete Elements of Rion Antirion Bridge / Papantoniou · Cobbett · Stathopoulos · Vlamis · Donadio · Anagnostopoulos / 405

The Initial Environmental Effects on the Design of a 90 m Long Integral Bridge in South Africa/Skorpen·Kearsley·Clayton·Kruger/407

Defining Loading Criteria for Proof Loading of Existing Reinforced Concrete Bridges / Koek koek · Lantsoght · Yang · de Boer · Hordijk / 409

Traffic Loading in South Africa – Remedial Action / Lenner · Viljoen / 411

Use of Fly Ash for Africa's Largest Suspension Bridge in Mozambique / Swanepoel · Seitz · Pengyu / 413

The Windsor Road Cable-Stayed Bridge for the Sydney Metro Northwest (SMN) Project, Australia / Khan / 415

A Multi-Featured Arch Bridge in India / Nag-Panday / 417

Detailed Design of the Almonte Viaduct / Arribas · Bernal · Pérez · González / 419

Almonte Viaduct. Construction Process / Cavero · Arribas · Carnero · Jiménez / 421

The New Bridge Over the Guaíba River — A 100,000 m² Precast Solution / Santos · Blancas · Rossi · Stucchi / 423

Upgraded Features of a Long Flyover in India / Nag · Panday / 425

Design and Construction of 120 m Span Arch Bridge in India / Panday / 427

Integral Abutment Bridges Approach Embankment: Design Solution Using Soil Reinforcement Above the Transition Slab / Gama·Fartaria·Almeida·Pinto/429

Development and Construction of a Non-Metal Bridge / Ogata · Ohshiro · Fukuda · Kasuga · Asai · Nagamoto / 431

Design and Construction of Composite Structures for New Expressway Bridges in Japan / Sakai / 433

Feasibility of Use of Void Formers in Concrete Slab Bridges Using Chilean Codes: Design and Testing / San Martin · Valenzuela / 435

Simulation of the Behaviour of a New Durable Transition Structure for Long Integral Abutment Bridges / Eichwalder · Kollegger / 437

Shear Capacity of the Ruytenschildt Bridge / Lantsoght · van der Veen · de Boer / 439

Investigation of Aramid FRP Tendons Used in PC Bridges, a Quarter of a Century After Construction/Sanga·Asai·Nagamoto·Fujiwara/441

Towards Slender, Innovative Concrete Structures for Replacement of Existing Viaducts / Reitsema·Luković·Hordijk / 443

Design of an Experimental Arch Pedestrian Bridge Made of UHPC/Tej·Kněž·Blank·Císler/445

Performance Monitoring of a Prestressed Concrete Railway Viaduct: Implementation of a System and First Results / Busatta · Moyo / 447

Chapter 10: Durability and Service Life

Achieving Concrete Performance in Chloride Exposures / H00t0n / 451

Taking Performance to Practice – Simplified In Situ Approach for Specifying Concrete for Chloride Environments / Nanukuttan · Basheer · Convie · Tang · McCarter / 453

Serviceability of Concrete: What Does It Mean? / Mindess / 455

National and International Code-Based Deterministic and Full Probabilistic Modelling to Describe Reliability of Various Australasian Marine Structures / Papworth - Gehlen / 457

Testing *fib* Prediction of Durability-Related Properties / Moro Torrent / 459

Performance-Based Design of Eco-Concrete / Juhart · David · Baldermann · Krischey · Mittermayr / 461

Practical Implementation of Durability Index Performance-Based Specifications: Current Experience / Nganga · Alexander · Moyana · Beushausen / 463

Resistance Classes for Concrete – Discussion of a Possible New Approach / Eckfeldt · Hintzen · Breitschaft / 465

Semi-Probabilistic Approach to the Service Life Design of Concrete Structures Exposed to Chlorides After a Repair Measure / Rahimi Gehlen / 467

Performance-Based Correlations Between Different Properties in Concrete With Supplementary Cementitious Materials (SCM) / Selander-Westerholm-Trägårdh / 469

Compliance Assessment of Durability Indicators for the New Port of Gaženica / Serdar · Peric · Bjegovic / 471

Effect of Carbonation on Durability Indicators and Microstructure in Cement Pastes and Concretes With Supplementary Cementitious Materials / Saillio · Baroghel-Bouny · Pradelle / 473

Durability of Concrete Structures Incorporating Recycled Aggregates / Schmitt Mai-Nhu Dierbi Tegguer · Rougeau · Saillio / 475

Study of Influence of Moisture Content, Portlandite Content and Pore Solution Conductivity on Surface Resistivity of Concrete / Bharath · Dhanya · Santhanam / 477

The Influence of Curing Methods on Durability Indicators and Micro- and Macro Porosity of Concrete / Beushausen · Höhlig · Martin / 479

Durability Performance of Structural Concrete Made With Coarse Recycled Concrete Aggregates / Dodds · Goodier · Christodoulou · Austin · Dunne · Fitt · Snowden / 481

Utilisation of Carbon Fibres in Reinforced Concrete as Integrated Sensor / Quadflieg Stolyarov · Gries / 483

Structural Sustainability, Quality Control, Durability and Robustness of Underground Metro Structures / Majumdar · Banerjee · Hati / 485

Strength and Durability Properties of Portland Cement Concretes in an Inland Urban Environment / Yunusa · Ballim / 487

Properties of Concrete With NaCl Solution Under Freeze-Thaw Cycles for Performance-Based Design / Tamon · Yi · Dawei / 489

Reliability Calibration of a Set of Spanish Concretes by Exposure Class Deemed-To-Satisfy Prescriptions / Andrade · Martinez · Sanjuan Rebolledo / 491

Critique of the Environmental Exposure Classification for Marine Concrete Structures in the Tidal Zone / Moore · Beushausen · Otieno / 493

Chapter 11: **Deterioration Mechanisms and Reinforcement Corrosion**

Using Wenner Probe Resistivity to Estimate Chloride Diffusion Coefficients in Concrete / Otieno · Mutale · Beushausen / 497

Chloride Transport Testing of Blast Furnace Slag Cement for Durable Concrete Structures in Norway: From Two Days to One Year Age / Polder · de Rooij · Larsen · Pedersen / 499

Concrete Durability Improvement in the Presence of Chlorides Using a Silane-Based Hydrophobic Impregnation / Donadio - Schuerch -Marazzani / 501

Preventing Chloride Ingress in Concrete With Water Repellent Treatments - A Ten Year Field Experiment / Selander · Andersson Trägårdh / 503

Three Examples of Using Hydrophobic Impregnations in Tunnels / Schießl-Pecka · Sodeikat Mayer / 505

The Effect of Limestone Mineral Addition and Cement Kiln Dust on the Chloride Ingress Into Mortar Specimens Made With Cement, Fly Ash and Slag / Benn · Baweja · Mills / 507

A Trade-Off Concept for Lightweight Concrete in Chloride Environments / Dunne · Newlands · Christodoulou · Goodier / 509

Modelling Chloride Ingress Under Freeze-Thaw Loading - 3D FEM Approach / Laukkanen Pinomaa · Andersson · Ferreira · Bohner / 511

Design and Construction of Durable Concrete Bridge Deck Suffering From Frost Damage and De-Icing Salt / Tanaka · Ishida · Iwaki · Satoh / 513

Assessments of Carbonation Ingress In-Field as a Tool to Calibrate Code Requirements / Helland / 515

Parametric Study of Coupled Models for Corrosion Initiation of Reinforcement and Induced Cracking of Concrete Cover / Bohner Ferreira - Saarela / 517

Correlation Between Mortar Resistivity and the Partial Process (Anodic, Cathodic and Ohmic) of Macro-Cell Reinforcement Corrosion / Hornbostel · Angst · Elsener · Larsen · Geiker / 519

Comparative Study of Alkali-Activated Fly Ash and OPC-Fly Ash Blended Concretes Through Durability Indices, Accelerated Rebar Corrosion and Carbonation Tests / Shekhovtsova · Kovtun · Kearsley / 521

Steps Towards a Performance-Based Design of Concrete Structures in Acidic Environments / Gerlach / 523

Accelerated Test Design for Biodeterioration of Cementitious Materials and Products in Sewer Environments / Lavigne · Bertron · Delagnes · Mengelle · Patapy · Lefebvre · Paul / 525

Concrete Durability Improvement in the Presence of Sulphates Using a Silane-Based Hydrophobic Impregnation / Donadio · Schuerch · Marazzani / 527

Hydration of Wollastonite Competing Carbonation: Microscopic Insights From Density Functional Theory and Ion Spectroscopy / Longo · Thissen / 529

Mineral Additions Efficiency Assessment to Mitigate DEF Risk / Linger · Lavaud · Divet · Cussigh · Barberon · Gotteland / 531

The Mechanisms Behind the Partial Recovery in the Degraded Mechanical Properties of ASR-Affected Concrete / Panesar · Gautam / 533

Chloride Threshold Values from Concrete Blocks Exposed at Rødbyhavn Marine Field Exposure Site / Sørensen · Poulsen · Jönsson / 535

Chapter 12: **Condition Assessment**

The Continuing Development of Ultrasonic Techniques for Assessment of Concrete Structures / Corbett / 539

Damage Evaluation for RC Bridge Slabs With AE and AE Tomography / Fukuda · Ogata · Oshiro · Watabe · Kasahara · Takamine · Shiotani · Nishida · Asaue / 541

Condition Assessment and Damage Localisation for Bridges by Use of the Deformation Area Difference Method (DAD-Method) / Erdenebat · Waldmann / 543

Experimental and Theoretical Assessment of Structural Health of Existing Reinforced Concrete Retaining Walls Under Low Frequency Dynamic Loading / Farenyuk · Marienkov · Kaliukh - Farenyuk - Marienkov - Kaliukh / 545

Experimental Study of Continuous Beams and Slabs Under Loss of Support Conditions / Stathas · Bousias · Palios · Strepelias · Fardis / 547

Prestressing of Reinforcing Bars in Concrete Slabs Due to Concrete Expansion Induced by Alkali-Silica Reaction / Hansen · Barbosa · Hoang / 549

Statistical Simulations in Connection With the Estimation of the Characteristic In-Situ Concrete Compressive Strength From Small Samples / Weber · Schnell / 551

Corrosion Risk Testing on Existing Reinforced Concrete Structures for Residual Life and Repair Assessment / Papworth · Klinghoffer · Nygaard · Kristensen · Marosszeky · Barnes · Dyson / 553

Material Properties Study of Seven 100-Years Old Concrete Bridges in Slovakia / Paulik. Bačuvčík · Ševčík · Janotka / 555

Uprating the Test Exactness for the Determination of Concrete Compressive Strength in Existing Structures by Combination of Non-Destructive Testing Procedures / Wilcke Walther / 557

Chapter 13: **Protection and Repair**

Cathodic Protection in Reinforced Concrete Structures: A Preliminary Discussion of the Significance of the Protection Criteria / Sassine Laurens · François · Ringot / 561

Maintenance and Repair of Steel Reinforced Concrete Structures by Simultaneous Galvanic Corrosion Protection and Chloride Extraction - Field Experiences / Schwarz · Müllner van den Hondel / 563

Novel Type of Discrete Galvanic Zinc Anodes for the Prevention of Steel Reinforcement Corrosion Induced by Patch Repair / Schwarz Bakalli - Donadio / 565

Incipient Anodes in Reinforced Concrete Repairs: A Cause or a Consequence? / Christodoulou · Goodier · Glass · Dunne / 567

Performance of Repair Materials Exposed to Marine Environment / Khan · Ahmed / 569

Evaluating the Performance of ECC as a Patch Repair Mortar / Sohawon · Beushausen · Omar · van Ziji / 571

Strengthening of Concrete Flat Slabs With an Overlaid Reinforced Concrete Layer / Fernandes · Lúcio · Ramos / 575

Investigations on Adhesive Bond Between High Performance Concrete Overlays and NSC Substrates / Randl · Peyerl · Steiner · Steinberger

Application of Novel Repair Materials and Techniques as Sustainable Promise for Durability of Cultural and Historical Heritage in Bulgaria / Rangelova · Traykova / 579

Rehabilitation of Mouille Point Seawall / Gates · Smith / 581

Corrosion Protection Material Replacement in Extradosed Viaduct Cables / Laco · Chrappa / 583

Development of Exchange Technology of Deteriorated Reinforced Concrete Slabs/Morohashi · Mishima · Wada · Aoki / 585

Barriers to the Realisation of Effectiveness in the Cracking Performance of Concrete Patch Repair Mortars in Service / Arito · Beushausen · Alexander / 587

Effect of an Expansive Admixture on Early-Age Cracking of Polymer Modified Mortars / Tchetgnia Ngassam - Beushausen / 589

Chapter 14: Structural Strengthening

Strengthening of Arches by the Application of Fibre Reinforced Mortar, Composite Materials and Reinforced Concrete on the Intrados / Kesteloot · Djelal · Benslimane / 593

A Design Method for Strengthening Steel Concrete Beam With Textile Reinforced Concrete / Hamelin · Si Larbi / 595

Heal the Pont Adolphe / Borderon / 597

Oporto's Sports Pavilion - Structural Rehabilitation of a 60 Years Old Landmark / Marques · Campos e Matos / 599

Shear Strength of Existing Members With Plain Rebars / Tinini · Minelli · Plizzari / 601

Iron-Based Shape Memory Alloys Reinforcement for Strengthening of Concrete Structures / Shahverdi · Czaderski · Michels · Motavalli / 603

Life Cycle Cost Analysis for the Seismic Retrofitting and Sustainability of Existing Building Stocks / Kyriakides · Chrysostomou · Tantele Votsis · Charalambous / 605

Hinged Wall Solutions for the Structural Strengthening of Existing RC Buildings / Belleri · Passoni · Marini · Riva / 607

Strengthening Behaviour of Concrete Beams by UHPC Jacketing / Hong · Hong / 609

Development of a Non-Destructive Testing Method to Assess the Bond Quality of Composite Strengthening Systems on Concrete Structures / Billon · Taillade · Quiertant · Hénault · Maurin Renaud · Merliot · Benzarti / 611

Evaluation of RC Beams With Induced Damages Strengthened by CFRP / Elraey · Alshebani / 613

Experimental Study to Determine if the Strength of an Epoxy Bonded Steel Plate to Concrete Can Be Increased by Adding Mechanical Anchors / Bruwer / 615

Evaluation of Damaged RC Beams Strengthened in Flexure by Pre-Tensioned UFC Panel/ Limpaninlachat · Matsumoto · Nakamura · Kono · Niwa / 617

Experimental Study to Determine if the Strength of an Epoxy Bonded Joint of CFRP Plates to Concrete Can Be Increased by Adding Mechanical Anchors / Bruwer / 619

Strengthening of Existing Road Bridges With External Post-Tensioning / Mandić Ivanković · Radić · Skokandić / 621

A New Approach for Column Jacket Design / Várdai · Bódi · Madaras / 623

Behaviour of a RC Bridge Strengthened With PT Tendons Under High Temperature in Tours (France) / Vion · Bennoui · Chipeaux / 625

Retrofitting Unreinforced Load-Bearing Masonry With a Sprayed SHCC Overlay/ van Zijl · de Beer / 627

KEYNOTE LECTURES